Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures

نویسندگان

  • Kuang-Li Lee
  • Hsuan-Yeh Hsu
  • Meng-Lin You
  • Chia-Chun Chang
  • Ming-Yang Pan
  • Xu Shi
  • Kosei Ueno
  • Hiroaki Misawa
  • Pei-Kuen Wei
چکیده

Metallic nanostructure-based surface plasmon sensors are capable of real-time, label-free, and multiplexed detections for chemical and biomedical applications. Recently, the studies of aluminum-based biosensors have attracted a large attention because aluminum is a more cost-effective metal and relatively stable. However, the intrinsic properties of aluminum, having a large imaginary part of the dielectric function and a longer evanescent length, limit its sensing capability. Here we show that capped aluminum nanoslits fabricated on plastic films using hot embossing lithography can provide tailorable Fano resonances. Changing height of nanostructures and deposited metal film thickness modulated the transmission spectrum, which varied from Wood's anomaly-dominant resonance, asymmetric Fano profile to surface plasmon-dominant resonance. For biolayer detections, the maximum surface sensitivity occurred at the dip of asymmetric Fano profile. The optimal Fano factor was close to -1.3. The wavelength and intensity sensitivities for surface thickness were up to 2.58 nm/nm and 90%/nm, respectively. The limit of detection (LOD) of thickness reached 0.018 nm. We attributed the enhanced surface sensitivity for capped aluminum nanoslits to a reduced evanescent length and sharp slope of the asymmetric Fano profile. The protein-protein interaction experiments verified the high sensitivity of capped nanostructures. The LOD was down to 236 fg/mL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are f...

متن کامل

Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays

Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances...

متن کامل

Dynamic control of plasmonic resonances with graphene based nanostructures

Emani, Naresh Kumar PhD, Purdue University, December 2014. Dynamic Control of Plasmonic Resonances with Graphene Based Nanostructures . Major Professors: Alexandra Boltasseva and Alexander V. Kildishev. Light incident on a metallic structure excites collective oscillations of electrons termed as plasmons. These plasmons are useful in control and manipulation of information in nanoscale dimensio...

متن کامل

Fano-resonant aluminum and gold nanostructures created with a tunable, up-scalable process.

An up-scalable approach for creating Fano-resonant nanostructures on large surfaces at visible wavelengths is demonstrated. The use of processes suitable for high throughput fabrication and the choice of aluminum as a cost-efficient plasmonic material ensure that the presented insights are valuable even in consideration of typical industrial constraints. In particular, wafer-scale fabrication a...

متن کامل

Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems.

We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017